On the modification of the preconditioned AOR iterative method for linear system
نویسندگان
چکیده
In this paper, we will present a modification of the preconditioned AORtype method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method.
منابع مشابه
On the modification of the preconditioned AOR iterative method for linear system
In this paper, we will present a modification of the preconditioned AOR-type method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method.
متن کاملComparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملImprovements of two preconditioned AOR iterative methods for Z-matrices
In this paper, we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix. These methods can be considered as improvements of two previously presented ones in the literature. Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners.
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کامل